Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Med Virol ; : e28326, 2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2233994

ABSTRACT

The initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants, BA.1 and BA.2, are being progressively displaced by BA.5 in many countries. To provide insight on the replacement of BA.2 by BA.5 as the dominant SARS-CoV-2 variant, we performed a comparative analysis of Omicron BA.2.12.1 and BA.5.2 variants in cell culture and hamster models. We found that BA.5.2 exhibited enhanced replicative kinetics over BA.2.12.1 in vitro and in vivo, which is evidenced by the dominant BA.5.2 viral genome detected at different time points, regardless of immune selection pressure with vaccine-induced serum antibodies. Utilizing reverse genetics, we constructed a mutant SARS-CoV-2 carrying spike F486V substitution, which is an uncharacterized mutation that concurrently discriminates Omicron BA.5.2 from BA.2.12.1 variant. We noticed that the 486th residue does not confer viral replication advantage to the virus. We also found that 486V displayed generally reduced immune evasion capacity when compared with its predecessor, 486F. However, the surge of fitness in BA.5.2 over BA.2.12.1 was not due to stand-alone F486V substitution but as a result of the combination of multiple mutations. Our study upholds the urgency for continuous monitoring of SARS-CoV-2 Omicron variants with enhanced replication fitness.

2.
Emerg Microbes Infect ; 11(1): 1742-1750, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1900998

ABSTRACT

There has been a rapid surge of hospitalization due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants globally. The severity of Omicron BA.2 in unexposed, unvaccinated, hospitalized children is unknown. We investigated the severity and clinical outcomes of COVID-19 infection during the Omicron wave in uninfected, unvaccinated hospitalized children and in comparison with influenza and parainfluenza viral infections. This population-based study retrieved data from the HK territory-wide CDARS database of hospitalisations in all public hospitals and compared severe outcomes for the Omicron BA.2-dominant fifth wave (5-28 February 2022, n = 1144), and influenza and parainfluenza viruses (1 January 2015-31 December 2019, n = 32212 and n = 16423, respectively) in children 0-11 years old. Two deaths (0.2%) out of 1144 cases during the initial Omicron wave were recorded. Twenty-one (1.8%) required PICU admission, and the relative risk was higher for Omicron than influenza virus (n = 254, 0.8%, adjusted RR = 2.1, 95%CI 1.3-3.3, p = 0.001). The proportion with neurological complications was 15.0% (n = 171) for Omicron, which was higher than influenza and parainfluenza viruses (n = 2707, 8.4%, adjusted RR = 1.6, 95%CI 1.4-1.9 and n = 1258, 7.7%, adjusted RR = 1.9, 95%CI 1.6-2.2, p < 0.001 for both, respectively). Croup occurred for Omicron (n = 61, 5.3%) more than influenza virus (n = 601, 1.9%, adjusted RR = 2.0, 95%CI 1.5-2.6, p < 0.001) but not parainfluenza virus (n = 889, 5.4%). Our findings showed that for hospitalized children who had no past COVID-19 or vaccination, Omicron BA.2 was not mild. Omicron BA.2 appeared to be more neuropathogenic than influenza and parainfluenza viruses. It targeted the upper airways more than influenza virus.


Subject(s)
COVID-19 , Influenza, Human , Orthomyxoviridae , Paramyxoviridae Infections , Child , Child, Hospitalized , Child, Preschool , Humans , Infant , Infant, Newborn , Paramyxoviridae Infections/epidemiology , SARS-CoV-2
3.
Sci Transl Med ; 14(646): eabn6859, 2022 05 25.
Article in English | MEDLINE | ID: covidwho-1794534

ABSTRACT

The devastation caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made clear the importance of pandemic preparedness. To address future zoonotic outbreaks due to related viruses in the sarbecovirus subgenus, we identified a human monoclonal antibody, 10-40, that neutralized or bound all sarbecoviruses tested in vitro and protected against SARS-CoV-2 and SARS-CoV in vivo. Comparative studies with other receptor-binding domain (RBD)-directed antibodies showed 10-40 to have the greatest breadth against sarbecoviruses, suggesting that 10-40 is a promising agent for pandemic preparedness. Moreover, structural analyses on 10-40 and similar antibodies not only defined an epitope cluster in the inner face of the RBD that is well conserved among sarbecoviruses but also uncovered a distinct antibody class with a common CDRH3 motif. Our analyses also suggested that elicitation of this class of antibodies may not be overly difficult, an observation that bodes well for the development of a pan-sarbecovirus vaccine.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Immunoglobulin Isotypes , Spike Glycoprotein, Coronavirus
4.
Nature ; 604(7906): 553-556, 2022 04.
Article in English | MEDLINE | ID: covidwho-1721546

ABSTRACT

The identification of the Omicron (B.1.1.529.1 or BA.1) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Botswana in November 20211 immediately caused concern owing to the number of alterations in the spike glycoprotein that could lead to antibody evasion. We2 and others3-6 recently reported results confirming such a concern. Continuing surveillance of the evolution of Omicron has since revealed the rise in prevalence of two sublineages, BA.1 with an R346K alteration (BA.1+R346K, also known as BA.1.1) and B.1.1.529.2 (BA.2), with the latter containing 8 unique spike alterations and lacking 13 spike alterations found in BA.1. Here we extended our studies to include antigenic characterization of these new sublineages. Polyclonal sera from patients infected by wild-type SARS-CoV-2 or recipients of current mRNA vaccines showed a substantial loss in neutralizing activity against both BA.1+R346K and BA.2, with drops comparable to that already reported for BA.1 (refs. 2,3,5,6). These findings indicate that these three sublineages of Omicron are antigenically equidistant from the wild-type SARS-CoV-2 and thus similarly threaten the efficacies of current vaccines. BA.2 also exhibited marked resistance to 17 of 19 neutralizing monoclonal antibodies tested, including S309 (sotrovimab)7, which had retained appreciable activity against BA.1 and BA.1+R346K (refs. 2-4,6). This finding shows that no authorized monoclonal antibody therapy could adequately cover all sublineages of the Omicron variant, except for the recently authorized LY-CoV1404 (bebtelovimab).


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Antibodies, Viral , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
5.
Nature ; 602(7898): 676-681, 2022 02.
Article in English | MEDLINE | ID: covidwho-1616993

ABSTRACT

The B.1.1.529/Omicron variant of SARS-CoV-2 was only recently detected in southern Africa, but its subsequent spread has been extensive, both regionally and globally1. It is expected to become dominant in the coming weeks2, probably due to enhanced transmissibility. A striking feature of this variant is the large number of spike mutations3 that pose a threat to the efficacy of current COVID-19 vaccines and antibody therapies4. This concern is amplified by the findings of our study. Here we found that B.1.1.529 is markedly resistant to neutralization by serum not only from patients who recovered from COVID-19, but also from individuals who were vaccinated with one of the four widely used COVID-19 vaccines. Even serum from individuals who were vaccinated and received a booster dose of mRNA-based vaccines exhibited substantially diminished neutralizing activity against B.1.1.529. By evaluating a panel of monoclonal antibodies against all known epitope clusters on the spike protein, we noted that the activity of 17 out of the 19 antibodies tested were either abolished or impaired, including ones that are currently authorized or approved for use in patients. Moreover, we also identified four new spike mutations (S371L, N440K, G446S and Q493R) that confer greater antibody resistance on B.1.1.529. The Omicron variant presents a serious threat to many existing COVID-19 vaccines and therapies, compelling the development of new interventions that anticipate the evolutionary trajectory of SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/virology , Immune Evasion/immunology , SARS-CoV-2/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/blood , COVID-19/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Cell Line , Convalescence , Evolution, Molecular , Humans , Immune Sera/immunology , Inhibitory Concentration 50 , Models, Molecular , Mutation , Neutralization Tests , SARS-CoV-2/chemistry , SARS-CoV-2/classification , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
6.
Emerg Microbes Infect ; 11(1): 147-157, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1537457

ABSTRACT

The repeated emergence of highly pathogenic human coronaviruses as well as their evolving variants highlight the need to develop potent and broad-spectrum antiviral therapeutics and vaccines. By screening monoclonal antibodies (mAbs) isolated from COVID-19-convalescent patients, we found one mAb, 2-36, with cross-neutralizing activity against SARS-CoV. We solved the cryo-EM structure of 2-36 in complex with SARS-CoV-2 or SARS-CoV spike, revealing a highly conserved epitope in the receptor-binding domain (RBD). Antibody 2-36 neutralized not only all current circulating SARS-CoV-2 variants and SARS-COV, but also a panel of bat and pangolin sarbecoviruses that can use human angiotensin-converting enzyme 2 (ACE2) as a receptor. We selected 2-36-escape viruses in vitro and confirmed that K378 T in SARS-CoV-2 RBD led to viral resistance. Taken together, 2-36 represents a strategic reserve drug candidate for the prevention and treatment of possible diseases caused by pre-emergent SARS-related coronaviruses. Its epitope defines a promising target for the development of a pan-sarbecovirus vaccine.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , SARS-CoV-2/immunology , Animals , Broadly Neutralizing Antibodies/immunology , COVID-19 , Chlorocebus aethiops , Cryoelectron Microscopy , Epitopes/immunology , HEK293 Cells , Humans , Neutralization Tests , Protein Interaction Domains and Motifs , Protein Structure, Tertiary , Vero Cells
7.
Expert Rev Mol Diagn ; 21(7): 741-747, 2021 07.
Article in English | MEDLINE | ID: covidwho-1236167

ABSTRACT

OBJECTIVES: Sensitive molecular diagnostic assays are essential for COVID-19 diagnosis. We evaluated the Hecin Scientific SARS-CoV-2 nucleic acid test kit, a dual-target real-time RT-PCR assay targeting the SARS-CoV-2 N and ORF1ab genes. METHODS: The Hecin test kit's diagnostic performance in detecting SARS-CoV-2 RNA was compared to the LightMix Modular SARS and Wuhan CoV E-gene kit (TIB Molbiol) and an in-house single-tube nested real-time RT-PCR using 296 clinical specimens, 11 proficiency testing samples, and 30 low-positive deep throat saliva and nasopharyngeal swab (NPS) samples pooled into negative samples in ratios of 1:5, 1:10, and 1:30. RESULTS: The limit-of-detection of the Hecin test kit was around 500 dC/mL for the N and ORF1ab targets. Sensitivity and specificity of the Hecin test kit were 98.1% (95% CI: 93.4-99.8%) and 100% (98.1-100%), respectively, when measured against the reference method. The Hecin test kit showed fair sensitivity (80%) in low-positive NPS samples pooled in ratios of 1:5 and 1:10. Its performance in pooled samples could be dramatically improved by adjusting the assay Ct cutoff. CONCLUSION: The Hecin test kit enables sensitive and specific detection of SARS-CoV-2 in clinical samples and pooled samples.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19 , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Specimen Handling , COVID-19/diagnosis , COVID-19/genetics , Humans , RNA, Viral/genetics
8.
Nature ; 584(7821): 450-456, 2020 08.
Article in English | MEDLINE | ID: covidwho-664494

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic continues, with devasting consequences for human lives and the global economy1,2. The discovery and development of virus-neutralizing monoclonal antibodies could be one approach to treat or prevent infection by this coronavirus. Here we report the isolation of sixty-one SARS-CoV-2-neutralizing monoclonal antibodies from five patients infected with SARS-CoV-2 and admitted to hospital with severe coronavirus disease 2019 (COVID-19). Among these are nineteen antibodies that potently neutralized authentic SARS-CoV-2 in vitro, nine of which exhibited very high potency, with 50% virus-inhibitory concentrations of 0.7 to 9 ng ml-1. Epitope mapping showed that this collection of nineteen antibodies was about equally divided between those directed against the receptor-binding domain (RBD) and those directed against the N-terminal domain (NTD), indicating that both of these regions at the top of the viral spike are immunogenic. In addition, two other powerful neutralizing antibodies recognized quaternary epitopes that overlap with the domains at the top of the spike. Cryo-electron microscopy reconstructions of one antibody that targets the RBD, a second that targets the NTD, and a third that bridges two separate RBDs showed that the antibodies recognize the closed, 'all RBD-down' conformation of the spike. Several of these monoclonal antibodies are promising candidates for clinical development as potential therapeutic and/or prophylactic agents against SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Epitopes, B-Lymphocyte/immunology , Pneumonia, Viral/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Monoclonal/analysis , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/ultrastructure , Antibodies, Neutralizing/analysis , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/ultrastructure , Antibodies, Viral/analysis , Antibodies, Viral/chemistry , Antibodies, Viral/ultrastructure , Betacoronavirus/chemistry , Betacoronavirus/ultrastructure , COVID-19 , Coronavirus Infections/prevention & control , Cryoelectron Microscopy , Disease Models, Animal , Epitope Mapping , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/ultrastructure , Female , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/ultrastructure , Lung/pathology , Lung/virology , Male , Mesocricetus , Models, Molecular , Neutralization Tests , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/ultrastructure
9.
Am J Infect Control ; 48(8): 890-896, 2020 08.
Article in English | MEDLINE | ID: covidwho-629078

ABSTRACT

BACKGROUND: To describe the infection control strategy to achieve zero nosocomial transmission of symptomatic coronavirus disease (COVID-19) due to SARS-CoV-2 during the prepandemic phase (the first 72 days after announcement of pneumonia cases in Wuhan) in Hong Kong. METHODS: Administrative support with the aim of zero nosocomial transmission by reducing elective clinical services, decanting wards, mobilizing isolation facilities, providing adequate personal protective equipment, coordinating laboratory network for rapid molecular diagnosis under 4-tier active surveillance for hospitalized patients and outpatients, and organizing staff forum and training was implemented under the framework of preparedness plan in Hospital Authority. The trend of SARS-CoV-2 in the first 72 days was compared with that of SARS-CoV 2003. RESULTS: Up to day 72 of the epidemic, 130 (0.40%) of 32,443 patients being screened confirmed to have SARS-CoV-2 by reverse transcription polymerase chain reaction. Compared with SARS outbreak in 2003, the SARS-CoV-2 case load constituted 8.9% (130 SARS-CoV-2/1458 SARS-CoV) of SARS-CoV infected cases at day 72 of the outbreak. The incidences of nosocomial acquisition of SARS-CoV per 1,000 SARS-patient-day and per 100 SARS-patient-admission were 7.9 and 16.9, respectively, which were significantly higher than the corresponding incidences of SARS-CoV-2 (zero infection, P <.001). CONCLUSIONS: Administrative support to infection control could minimize the risk of nosocomial transmission of SARS-CoV-2.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Cross Infection/epidemiology , Cross Infection/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/transmission , Cross Infection/transmission , Disease Outbreaks/prevention & control , Female , Hong Kong/epidemiology , Humans , Infection Control/methods , Male , Middle Aged , Pneumonia, Viral/transmission , SARS-CoV-2 , Young Adult
10.
Pharmacol Res ; 159: 104960, 2020 09.
Article in English | MEDLINE | ID: covidwho-401828

ABSTRACT

Coronavirus Disease 2019 (COVID-19) caused by the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is associated with a crude case fatality rate of about 0.5-10 % depending on locality. A few clinically approved drugs, such as remdesivir, chloroquine, hydroxychloroquine, nafamostat, camostat, and ivermectin, exhibited anti-SARS-CoV-2 activity in vitro and/or in a small number of patients. However, their clinical use may be limited by anti-SARS-CoV-2 50 % maximal effective concentrations (EC50) that exceeded their achievable peak serum concentrations (Cmax), side effects, and/or availability. To find more immediately available COVID-19 antivirals, we established a two-tier drug screening system that combines SARS-CoV-2 enzyme-linked immunosorbent assay and cell viability assay, and applied it to screen a library consisting 1528 FDA-approved drugs. Cetilistat (anti-pancreatic lipase), diiodohydroxyquinoline (anti-parasitic), abiraterone acetate (synthetic androstane steroid), and bexarotene (antineoplastic retinoid) exhibited potent in vitro anti-SARS-CoV-2 activity (EC50 1.13-2.01 µM). Bexarotene demonstrated the highest Cmax:EC50 ratio (1.69) which was higher than those of chloroquine, hydroxychloroquine, and ivermectin. These results demonstrated the efficacy of the two-tier screening system and identified potential COVID-19 treatments which can achieve effective levels if given by inhalation or systemically depending on their pharmacokinetics.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus , Coronavirus Infections/drug therapy , Drug Evaluation, Preclinical/methods , Pneumonia, Viral/drug therapy , Androstenes/pharmacology , Animals , Benzoxazines/pharmacology , Betacoronavirus/drug effects , Betacoronavirus/physiology , Bexarotene/pharmacology , COVID-19 , Caco-2 Cells , Cell Survival/drug effects , Chlorocebus aethiops , Coronavirus Infections/virology , Cytopathogenic Effect, Viral/drug effects , Databases, Pharmaceutical , Drug Approval , Drug Repositioning , Enzyme-Linked Immunosorbent Assay , Humans , Iodoquinol/pharmacology , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , United States , United States Food and Drug Administration , Vero Cells , Viral Load/drug effects , Virus Replication/drug effects , COVID-19 Drug Treatment
11.
Infect Control Hosp Epidemiol ; 41(5): 493-498, 2020 05.
Article in English | MEDLINE | ID: covidwho-4656

ABSTRACT

OBJECTIVE: To describe the infection control preparedness measures undertaken for coronavirus disease (COVID-19) due to SARS-CoV-2 (previously known as 2019 novel coronavirus) in the first 42 days after announcement of a cluster of pneumonia in China, on December 31, 2019 (day 1) in Hong Kong. METHODS: A bundled approach of active and enhanced laboratory surveillance, early airborne infection isolation, rapid molecular diagnostic testing, and contact tracing for healthcare workers (HCWs) with unprotected exposure in the hospitals was implemented. Epidemiological characteristics of confirmed cases, environmental samples, and air samples were collected and analyzed. RESULTS: From day 1 to day 42, 42 of 1,275 patients (3.3%) fulfilling active (n = 29) and enhanced laboratory surveillance (n = 13) were confirmed to have the SARS-CoV-2 infection. The number of locally acquired case significantly increased from 1 of 13 confirmed cases (7.7%, day 22 to day 32) to 27 of 29 confirmed cases (93.1%, day 33 to day 42; P < .001). Among them, 28 patients (66.6%) came from 8 family clusters. Of 413 HCWs caring for these confirmed cases, 11 (2.7%) had unprotected exposure requiring quarantine for 14 days. None of these was infected, and nosocomial transmission of SARS-CoV-2 was not observed. Environmental surveillance was performed in the room of a patient with viral load of 3.3 × 106 copies/mL (pooled nasopharyngeal and throat swabs) and 5.9 × 106 copies/mL (saliva), respectively. SARS-CoV-2 was identified in 1 of 13 environmental samples (7.7%) but not in 8 air samples collected at a distance of 10 cm from the patient's chin with or without wearing a surgical mask. CONCLUSION: Appropriate hospital infection control measures was able to prevent nosocomial transmission of SARS-CoV-2.


Subject(s)
Betacoronavirus , Clinical Laboratory Techniques , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Infection Control , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , COVID-19 , COVID-19 Testing , Coronavirus Infections/diagnosis , Coronavirus Infections/transmission , Health Personnel , Hong Kong , Humans , Infection Control/methods , Molecular Diagnostic Techniques , Pneumonia, Viral/transmission , SARS-CoV-2 , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL